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Abstract. The effects of order-parameter strain coupling on the critical (tricritical) sound 
attenuation and dispersion are studied above T, in the elastically isotropic Ising model. 
Under free boundary conditions a cross-over in the behaviour of acoustic quantities to a 
‘strong-coupling’ regime is predicted. New scaling relations for the critical attenuation and 
dispersion are obtained and the corresponding scaling functions are calculated using an E -  

expansion. Non-asymptotic effects are also discussed. 

1. Introduction 

Anomalies in sound attenuation and dispersion give us a valuable insight into the 
dynamics of the order-parameter (OP) fluctuations near the phase transitions in solids. 
These phenomena have been studied by a number of authors in the random-phase 
approximation (Pytte 1970), using scaling arguments and the mode-coupling theory 
(Schwabll973, Kawasaki 1976) and renormalisation group (RNG) theory (Murata 1976, 
Bhattacharjee 1982, Iro and Schwabl 1983, Dengler and Schwabl 1987). It was found 
that the critical exponents related to sound attenuation depend on the symmetry of the 
coupling between the strain and OP (Murata 1976, Fossum 1985). Recently, much 
attention has been paid to the problem of dynamic scaling of sound (Fossum 1985, Iro 
and Schwabll983, Dengler and Schwabl1987). Iro and Schwabl(l983) have calculated 
the dynamic scaling functions for sound attenuation and dispersion above the critical 
temperature T,. They have employed a generalised Nelson method of integration for 
the RNG recursion relations (Nelson 1976). Both the critical exponents and the scaling 
functions have been obtained by evaluating the OP fluctuations in a rigid lattice. In these 
‘weak-coupling’ theories the sound mode is treated only as a small perturbation acting 
on the OP system. 

The aim of this paper is to show that the inclusion of back-reaction of elastic 
degrees of freedom onto the OP considerably changes the critical exponents and the 
corresponding scaling functions. We shall limit our discussion to the disordered phase 
and to the case of scalar order parameter coupled with an isotropic elastic medium. In 
this case the elastic deformations are only coupled with the energy density of the OP and 
therefore the specific heat exponent a will play the crucial role in our considerations 
(Sak 1974). 

The problem of the influence of elastic degrees of freedom on the statics of similar 
systems has been discussed in detail by Bergman and Halperin (1976) and by Bruno and 
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Sak (1980) using the RNG methods. They found that in isotropic systems with free 
boundaries (constant pressure) a first-order transition can be expected whenever the 
specific heat of the incompressible model diverges, as is the case for the Ising model in 
three dimensions. But since this discontinuity is usually small then the change in the 
critical behaviour can be observed probably only extremely close to T, and one can 
observe the pseudo-critical or pseudo-tricritical behaviour in a range of temperatures 
prior to the transition, with ideal Ising exponents for the OP singularities. The first-order 
transition is associated with macroscopic instability, which appears when the bulk 
modulus becomes negative (Bergman and Halperin 1976). It is known that the critical 
behaviour of such a system depends strongly on the boundary conditions, and thus the 
Fisher-renormalised critical exponents are expected under pinned boundary conditions. 
The critical behaviour of the elastically isotropic Ising model is unstable with respect to 
anisotropic perturbations, regardless of boundary conditions. However, if the elastic 
anisotropy is small, one may expect that at a fixed pressure the system will encounter 
the macroscopic instability before the microscopic instability will develop, Then the 
system will behave in the same way as an exactly isotropic one. 

So far, the effect of elastic couplings on sound damping has been studied in uniaxial 
dipolar systems by Meissner and Pirc (1980). Employing periodic boundary conditions 
(constant volume) they have predicted a logarithmic cross-over of the divergence of 
sound damping coefficient from a high-temperature ‘rigid’ regime to a ‘compressible’ 
regime. 

In this paper we present the calculations of sound attenuation and dispersion in 
a compressible Ising-like system under a constant pressure. We find two different 
asymptotic pseudo-critical ( pseudo-tricritical) regimes for acoustic properties: a weak- 
coupling (‘rigid’) one to which the lowest order in the elastic coupling theory applies and 
a strong-coupling (‘compressible’) regime with a large value of effective compressibility 
and with the ratio of shear and longitudinal bare moduli tending to zero. In the latter 
region the exponent governing the sound attenuation is smaller by ( ~ / 2  than that for the 
former case. We also describe a cross-over between these regimes and macroscopic 
instability effects in terms of two non-universal parameters. 

The paper is organised as follows. In § 2  the model is presented and a general 
expression for the acoustic response function is derived. The following section (§ 3) is 
devoted to the discussion of the asymptotic results. In § 4 the cross-over and effects of 
macroscopic instability are studied. The application of the theory to the tricritical 
behaviour is discussed briefly in 9 5 .  The last section (8  6) gives the summary of the 
results. 

2. The model and the acoustic response function 

We consider an isotropic Ising model described by the Hamiltonian (Bruce 1980) 

H = He,  + Hop + Hint 

consisting of three parts. The elastic part is 
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where the components of the strain tensor eap(x)  are related to the displacement vector 
u ( x )  via 

e m p ( x )  = t  -+- i::; :::I 
and C:p are the bare elastic moduli. For an isotropic medium C:4 = ;(Cy, - Cy,). For 
the OP part we shall adopt the standard Ginzburg-Landau form 

Hop = I ddx[troS2 + + tzl0S4] (2.4) 

with the OP denoted by S(x). Finally the term 

Hint = d d x g o  2 e,,S2 I ,  
describes the interaction between the two fields. 

the constant-volume phonon parts (Larkin and Pikin 1969): 
A given elastic configuration can be separated into a homogeneous deformation and 

where Vand 0 are the volume and density of the system at equilibrium. Then the normal- 
mode expansion is introduced: 

u(k) = 2 e h  (k) Q k ,  I (2.7) 
A 

with the normal coordinate Qk,I  and polarisation vector eI (k ) .  
We would like to consider a system under constant external pressure P; therefore 

the term E ,ean (P  - Po), where Po characterises the equilibrium state against which 
the strain is determined, should be added to the Hamiltonian. 

At this stage one can integrate over the homogeneous deformations, which is equiv- 
alent to choosing free boundary conditions. The result is a shift of the mean-field 
transition temperature and a new term 

-”( 4 v  1 d d x  S 2 ) (  I ddy  S:) 

added to the Hamiltonian, with wo = 2g;/B, and 

The effective Hamiltonian will be denoted as I?. 

(Meissner 1980, Schwabl and Iro 1981) 
We assume that the dynamics of the system is described by the Langevin equations 

(2 .8~)  

(2.86) 
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where the Gaussian white noises &(t) and qk,l(t) have variances related to the bare 
damping terms To and Dik’ by the Einstein relations. 

It is convenient to represent these equations in a functional form (Martin er a1 1973, 
Janssen 1976) with Lagrangian given by 

where Qk,h and s k  are auxiliary ’response’ fields. With the Lagrangian, all correlation 
and response functions can be computed as path integrals weighted with density exp(L). 

Next we apply the RNG method to the full Lagrangian, integrating out all 2, S, Q, Q 
with momenta and frequencies in the region 

e - l<  k < 1 --CO < w < -CO. 

To first order in E = 4 - d the relevant recursion relations are 

d r  3u + U 
- -2r+-  
d l  1 + r  

d u  

(I + r)* 
du 
d l  

d l  (1 + r)’ 

dl (1 + r)’ 
dc’ - u P ~ c ‘  

- 

(2 .10~)  

(2. lob) 

(2.10c) 

(2.10d) 

(2.10e) 

where c2 = Cll/pis the square of the longitudinalvelocity (the transverse modes are not 
coupled to the OP in this model) and the parameters U, U ,  uph are defined by 

U = UPh - wK4 U = 6K4 - u p h  
2g2 
c11 

u P h  = - K4 

and K4 = l/(Sn’). 
For the discussion of the OP properties it is sufficient to study only the first three of 

these equations. They can be obtained if we integrate out the elastic variables at the 
beginning of our calculations, as was done by Bruno and Sak (1980). They found four 
‘OP’ fixed points in the space of parameters ( r ,  U, U ) .  These include two rigid fixed points 
( U *  = 0): Gaussian(G)(O, 0, O)andIsing(I) ( - ~ / 6 ,  ~/9,O);aswellasthecorresponding 
renormalised fixed points (U* # 0): spherical (S) ( - ~ / 2 , 0 ,  E) and renormalised king 
(rI) (-&/3, &/9, &/3). The projections of the RNG flows and fixed points, in the plane r = 
const, are shown schematically in figure 1. The most stable renormalised Ising fixed 
point is inaccessible because the bare value of the parameter U is negative for a solid 
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Figure 1. The projections of the RNG flows and 
fixed points onto the plane r = const. 

with a positive value of the shear modulus. On the other hand the Ising fixed point is 
unstable against U perturbations with the scaling exponent A, = a/v, where a and v are 
Ising exponents. The observed run-away was interpreted as a signal of a first-order 
transition (Sak 1974), the physical nature of which is associated with the fact that the 
bulk modulus 

becomes negative close to T,, indicating an instability against certain macroscopic 
deformations. However, if u0 is small, the Ising fixed point will determine the behaviour 
of the system over a wide range of experimentally controllable parameters (like reduced 
temperature). This pseudo-critical region may be quite large because of the smallness 

The subspace of parameters ( r ,  U ,  U )  is insufficient to permit a description of the 
acoustic properties of the system. It turns out that in order to study these properties one 
has to take into account another relevant parameter, u p h ,  which fulfils the same RNG 
equation as U ,  but has a different initial value. Contrary to uo, the bare value of u p h  is 
always positive. Moreover, the absolute value of the former may be much smaller than 
the latter if C& Cyl, Thus, under repeated RNG transformation, u p h  will approach a 
fixed-point value u ! ~ *  = a/v + O(E*) .  The fixed point (r? , U ? ,  U ; ,  u p h * )  in the space 

I1. The description in terms of the two parameters U and u p h  is sensible only for the 
system at a constant pressure, where their bare values can be treated to a certain degree 
as independent. If a constant-volume constraint is imposed on the system, then these 
parameters become identical. 

Now we shall concentrate on the evaluation of the dynamic response function of the 
longitudinal phonons G(k ,  U ) ,  from which the sound velocity and attenuation can be 
extracted. We have applied the matching method introduced in statics by Nelson (1976). 
This method was first applied to dynamics by Siggia and Nelson (1977) and by Siggia 
(1977), who found the temperature dependence of some kinetic coefficients at zero 

of A,. 

( r ,  U ,  U ,  u p h )  will be denoted as I*, to be distinguished from (rp , U ? ,  u I  d , 0), denoted as 
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momentum and frequency, and then it was generalised to finite momenta and frequencies 
by Folk eta1 (1977). To start with we need to solve the recursion relations to O ( E ) :  

z1 = r1 + i(3uf + ul)(l  - r l )  In(1 + r l )  (2.11a) 

(2.11c) 

u1 = u0 e(cclv)l [I - u o / u z  + (u, , /u$) e(m'u)l]-l (2.11b) 

 UP^ 1 =  UP^ 0 e(n/uY[1 - u i h / u y h *  + ( u ~ h / y ~ h * )  @ I  e(miuY-1 

c2 1 -  - c2[1 0 - u i h / u y h *  + ( u i h / u y h * )  e(w/")']-1 (2.11d) 

where the temperature scaling field is defined by 

z1 = z e'Iv[1 - u o / u $  + ( u o / u ~ )  e(n'v)']-l. (2.12) 

Here z = zo - ( T  - Tc) and a, v are the rigid Ising exponents. In the above expression 
for simplicity we keep the parameter U at its fixed-point value U?. 

With this solution at hand we now proceed to calculate the acoustic response function 

G(k, W )  = ( Q k , u Q - k , - u ) ~ .  (2.13) 

The recursion relation method for any physical quantity involves making use of the 
scaling relation it satisfies. In this case we use the relation 

G(k, 0; {P} )  = G(k1, mi; { P I } )  (2.14) 

where kl = k e', o1 = cc) e'' and {,U/} is a set of parameters of the Lagrangian at the lth 
stage of iteration with p = po. 

The effect of couplings in L(1) on the response function G(1) may be expressed in 
terms of a self-energy C(1) given by 

G-'(l) = Go'(1) + C(1) (2.15) 

where the dependence on k1 and w1 has been dropped for simplicity and G,(Z) is the 
response function in the harmonic approximation for the Lagrangian. Gol(l) may be 
expressed as 

G-1 0 0  1 = C2k2 0 1  - ie-Zl DOk20 1 1  - ,-(2Z-2)1 of - 2 lo1 dl'g;kF e-v 

x [(I  + r l ,  - icol,/ro)(l + T - ~ , ) P ] - ~  (2.16) 

where the first line represents the bare response function after a simple change of 
scale and the second one comes from the trajectory integral representing contributions 
generated by the iterations of the RNG transformations. 

Since the Lagrangian is bilinear in Q and Q ,  it may be split into two independent 
parts 

L[S ,  9, Q ,  &I = L"5f,[S, SI + L[Q,  Q1 
using the transformation 

where l f k I 2  = g2k2/pand the 1 dependence has been suppressed. The o p  effective Lagran- 
gian Lgb contains the strain mediated interactions, whose effect can be represented 
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simply by a shift of the parameters 
a-, = - y P h  

w+ U = w - U P h  
(2.18) 

With the help of transformation (2.17) the self-energy X ( I )  may be expressed entirely in 
terms of the OP 'energy' response function D(k ,  0; I) 

(2.19) 

where 

D(k ,  0; 1) = ( r , ( S S ) , , , ( S 2 ) - k , - , ) L ~ ~ ( l ) .  (2.20) 

The denominator in (2.19) is necessary so as not to include the reducible part of the 
phonon propagator to C. It was neglected in the lowest order in the elastic coupling 
theories (Murata 1976, Iro and Schwabll983, Fossum 1985). 

The scaling relation (2.14) as well as (2.16) and (2.19) lead to the result 

x {[(I + r,, - i o l t / r o ) ( l  + rr , ) ] - '  - 1) - u2 (2.21) 

where the leading contribution from the trajectory integral has been incorporated into 

Still we have to determine the energy response function D for some I = I*, where 
perturbation theory could be used. In the ultrasonic experiments the wavelength is much 
longer than the correlation length so the average in (2.20) may be evaluated in the limit 
k = 0. Following Dengler et a1 (1985) we use the matching condition 

c:. 

( ~ ~ * / 2 r ~ ) ~ ' ~  + x i 2  = 1 (2.22) 

with the static OP susceptibility obeying the scaling relation 

x = e*, X r  (2.23) 

where x may be calculated by the static version of this method (Bruno and Sak 1980) 
with the result 

(2.24) x = z-7(1 - b + b t - " )  

where b = u o / v A  and y = 2v + O(E'). 
The matching condition (2.22) permits an explicit solution for I* 

er* = t-"Q(y; t) (2.25) 

with 

Q ( y ;  Z) = [ ( l  - b + bt-")-' + ( ~ / 2 ) ~ / " ] - ' / ~  

and y = ot-zy/ro as the reduced frequency. 
The function D has been calculated perturbatively by Iro and Schwabl (1983) in a 

rigid system (function Z l  in that paper). The diagrams are shown in figure 2. For the 
internal lines, in principle, one would have to take an expression valid in the whole range 
of k ,  w and t (e.g. the result of Dengler et a1 (1985)). But this can be done only 
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Figure 2. Diagrams contributing to the self-energy in the first order in E .  The curves and the 
circled curves represent the OP response and the correlation functions, respectively. 

numerically. Iro and Schwabl(l983) have approximated the internal propagators by the 
ones for which self-energy is restricted to the Hartree bubble. The fixing condition for 
the external parameters o and z reduces the region in the integral corresponding to the 
diagram, where the difference really matters, leading to the result being in very good 
agreement with numerical results (Iro 1984). In the present paper we have used another 
approximation. Because the low-frequency and small-momentum behaviour of the OP 
propagators contribute most significantly to the integral, we have used the conventional 
approximation for the OP response function 

G,(p ,  V ;  I) = 2;' + p 2  - b/T,  (2.26) 
which together with the matching condition (2.22) is sufficient to obtain the small-y 
behaviour of d ( y )  D(yQ"(y)To,  0) correct to O(E).  However, in both approximations 
the large-y behaviour of d ( y )  can be determined only to leading order iny-'. Fortunately, 
the high-frequency corrections to the leading behaviour are small, so their detailed form 
is not very important in this problem. 

Next, we substitute (2.25) into (2.21). From the renormalised phonon frequency we 
obtain the expression for the sound velocity 

and the corresponding phonon width r p h ( 0 ,  z) determines the attenuation coefficient 

N 
( 2R 

x Im(d) - -Im(do) Re(do) (2.27 b )  

where we have ignored the regular contributions, J is a non-universal constant and the 
abbreviations are N = u ; ~ *  uz-"Qalu, R = 1 - a + ( N / u f h " )  and a = ugh/uFh*. The 
function d ,  which is a sum of function d and the remainder of the trajectory integral in 
(2.21), may be written as 

- 3u,* (do)' + O ( E ~ )  

with 

(2.28) 
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In the above procedure we encounter the same difficulties as in the static case (Bruno 
and Sak 1980), associated with crossing a mean-field instability line U =-U under 
repeated iterations of the RNG, before the condition (2.22) is satisfied. An inequality 
z”Q-’(y) 2 K where 

K = (1 - h)( l  - b) l(1 -bb)hlu’a 
(2.29) 

with h = ur / (uT + U ; ) ,  must be fulfilled in order that the results (2.27) remain valid. 
The same reasoning concerning the static susceptibility in (2.24) leads to the even more 
restrictive condition z 2 x i i n ,  where 

z m i n  $. - - K’/U (2.30) 

indicates the onset of the first-order transition. For z 6 z i i n  other techniques have to 
be applied to calculate physical properties of the system (Nicolll981). In this paper we 
restrict our considerations to the region z 3 z i in .  

On the other hand the present description is expected to be valid in the range of 
parameters where the corrections to scaling due to the departure of the coupling U 
from the fixed-point value U* (our analysis can easily be generalised to include these 
corrections) as well as higher transients and analytic corrections are still negligible. The 
first non-asymptotic analysis of critical sound propagation, valid in the entire range of 
applicability of the Ginzburg-Landau Hamiltonian, was performed by Pankert and 
Dohm (1986) for 4He (n = 2). 

3. Asymptotic behaviour 

In this section we shall discuss the general expression (2.27). It shows two distinct 
asymptotic regimes depending on the relative size of z, w and the parameter a.  In the 
limit a -+ 0, or more generally, if the inequality 

z”Q-’(y) % K ,  (3.1) 
is fulfilled, where K, is roughly equal to avIn, we recover the results of Iro and Schwabl 
(1983) 

a(u, z) - W2Z-PAgA(y) ( 3 . 2 ~ )  

c 2 ( w ,  z) - c2(o, z) - z--wfA(y) (3.2b) 

where PA = zv + LY, gA(y) =-Y-~Q”’” Im(d) + O ( E ~ )  and f ~ ( y )  = f ~ ( y )  - f ~ ( 0 )  with 
fA(y) = -QwIV[l + uph* Re(d”)] + O ( E ~ ) .  Thescalingfunctionsgandfhaveasubscript 
A in this ‘weak-coupling’ regime. 

There is yet another pseudo-critical regime for a -+ 1 or for t”Q-’(y) G K, and with 
Ibl G 1. For this ‘strong-coupling’ regime we have obtained different results 

a(0,  r )  - w2z-pBgB(.Y) ( 3 . 3 ~ )  

c2(w,  T) - c2(o ,  z) - zafB(y) (3.3b) 

where pB = zv + (a/2) 

gB(y) = y-’Qa’2u[Im(d) - (uFh*/2) Re(do) Im(do)] + O ( E ~ )  
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Figure 3. Scaling functions for sound attenuation for E = 1 with normalisation gA(0) = 

gB(O) = 1. 

and fB(y) =fB(y) -fB(0) with fB(y) = Q-./''[1 - uFh* Re(do)] + O ( E ~ ) .  The scaling 
functions g andffor  both regimes are compared in figures 3 and 4. In figure 3 the flat 
parts of the curves correspond to the hydrodynamic region ( y  1) where the leading 
behaviour 

a(w,  z) - w 2 t - p  (3.4) 

log,,( Y 1 
-1  0 1 2 3 L 5 

I I I I I I I I 

Figure4. Scalingfunctions for sound dispersion. The normalisationf,(O) = fB(0) andf,(;o) = 
1 has been used. 
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\ 
\ 
\ 
\ 
\ 
\ 

Figure 5. Schematic division of (tZu, U /  

2To)-plane into weak- and strong-coupling 
regimes. The hatched area t < lies 
outside the regionofvalidityof themethod 

(T>,”IZV 

WIZI-, used in this paper. 

is found with the corresponding value of the exponent p for given regime. For y + 
(critical region) we obtain 

a(o, z) - 0 2 - ( p ’ v z ) .  (3.5) 
In figure 4 the common part of both curves corresponds to the hydrodynamic behav- 
iour f(y) - y2. For y 4 CO, fA(y) saturates as [l - (2/y)“/‘”] while fB(y) diverges as 

The pseudo-critical behaviour can be observed if Ibl 4 1. In this case x i l n  is small. In 
order to fulfil this condition as well as a = 1, simultaneously, C& Cyl must hold. Thus 
we expect that the expressions (3.2) are especially suitable for the systems with a strong 
op-phonon coupling and with a small ratio of shear and longitudinal moduli. 

The ‘strong-coupling’ regime results were previously obtained (Pawlak 1984) by 
the use of Wilson-Feynman technique (Wilson 1972). In that method one artificially 
extends the pseudo-critical ‘strong-coupling’ region by putting ua = uf , uo = 0 and 
u:h = u p h * .  Then the singular logarithmic terms may be exponentiated and the correct 
leading behaviour is obtained. 

The inequality (3.1) may be interpreted graphically as is shown in figure 5 where the 
full curve symbolises a cross-over region from weak- to strong-coupling regime. In the 
hatched area t s tzln,  near the first-order transition, the formulae obtained in this paper 
are not valid. The broken curve separates the weak-coupling regime from a non-critical 
region. 

[(2/y)-”’”” -11. 

4. Non-asymptotic behaviour 

In more realistic systems the observed behaviour may be intermediate between the 
weak- and strong-coupling regimes. Moreover, as long as the first-order transition region 
is approached the macroscopic instability effects become apparent. In the following, we 
shall study such non-asymptotic behaviour on the basis of (2.27). It should be stressed 
that the term ‘non-asymptotic’ is used in this paper in a slightly different sense from its 
usual meaning of ‘not asymptotically close to criticality’. Here by ‘asymptotic’ we 
understand the behaviour fully determined by one of the fixed points (I1 or 12) and 
expected to be characteristic within a certain range of physical parameters. The main 
point is that our asymptotic behaviours are not actually asymptotic because if z decreases 
below riin the system evolves eventually towards a first-order transition. 
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I- 

o: -5 -4  -3 - 2  -1 

- 

- 1 . 0  

0.01 / 

1 0.9 / 
1 . 0  

t 

i c l  

r 

Figure 6 .  The temperature dependence of the square of sound velocity: (a )  for several values 
of w / r ,  with a = 0.5 and b = 0; (6) for several vaues of the parameter a with w/r ,  = 
and b = 0; and (c) for several values of b with w/T, = and a = 0.5. The figure is obtained 
from ( 2 . 2 7 ~ )  with = 1. 

The expressions (2.27) are illustrated in figures 6 and 7, where we have plotted 
a(w,  t) and $(CO, t) as functions of loglo(t) for different values of the parameters a, b 
and w / r 0 ,  with E = 1. As follows from these figures for small values of a ,  the sound 
velocity changes only slightly in the whole temperature interval considered. Its level of 
saturation decreases as the frequency @/To goes to zero, but for finite o/ro the sound 
velocity remains finite even very close to the transition temperature. The slope of the 
sound attenuation coefficient in the hydrodynamic region depends on a and b (figure 7). 

-5  - 4  -3 - 2  -1 

t c c 
- 5  -4 - 3  - 2  -1 -5  - 4  -3 -2  -1 

log i&T) 

Figure 7. Double logarithmic plot of the sound attenuation coefficient from (2.276) with 
.Ti = 1 and E = 1: (a) for various values of w/To with a = 0.5 and 6 = 0; (6) for various 
values of a with w/To = and 
a = 0.5. 

and 6 = 0; and (c) for various values of b with w/T,  = 
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log 101 T) 
- 6  -5  - 4  - 3  - 2  -1 

I I 1 I I I 

1O;Ol 

10,o 01) 
10,o 1 

( -0  01,Ol 10,o 5 )  
I 3 E =  (0.11 

n 

[- 0.05; 0.5) / 

Figure 8. Effective hydrodynamic sound attenuation exponent plotted against log,,(z) for a 
variety of different values of (b ;  a) from (4.2). The curves with (0; 0) and (0; 1) correspond 
to the asymptotic values pA and pB, respectively. 

One can define an effective hydrodynamic sound attenuation exponent 

which characterises the initial increase in the attenuation coefficient. From (2.27b) we 
have 

(4.2a) 

pH(t) is shown in figure 8 as a function of logl0(z) for various values of (b ;  a).  The lines 
with (0; 0) and (0; 1) correspond to the weak- and strong-coupling regimes, respectively. 

It is interesting to test (4.2) in the case of periodic boundary conditions (V = const). 
Then b = a and at the renormalised Ising fixed point we obtain 

(4.2b) 

since a + 1. On the other hand if we put Fisher-renormalised exponents a and v into 
the equation pH = zv + a, expected to be valid in the 'weak-coupling' regime, i.e. 
a+ -a/(l - a) = - a a n d v +  v / ( l  - a) -- v + a/2,thenweobtainpH =zv + O ( E ~ ) .  
The difference between these values is due to the singular behaviour of longitudinal 
sound velocity (c2 - CI1 - t"), which tends to zero for a compressible Ising system with 
a constant volume (Bergman and Halperin 1976). It is easy to check that the very third 
power of sound velocity that appears in the denominator of the expression for sound 
attenuation (e.g. equation (6) in the paper of Iro and Schwabl(l983)) is responsible for 
the additional term 3a/2 in equation (4.2b). 

The curves in figures 6, 7 and 8 have physical interpretation only for z 2 tiin. The 
value of t Z i n  is very sensitive to the choice of parameter h in (2.29). When U ;  and v,"I 
are evaluated to O(E) ,  h is 0.25, but if we evaluate U ?  and u,"I to the second order in E 

(de Moura et a1 1976) then h = 0.65 and the values of tii,, are much smaller than those 

P H  = zv + 3a/2 + O(E')  
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calculated for h = 0.25, as is shown in table 1. Equations (2.29) and (2.30) imply that 
the relatively large value of the exponent a i n  the O( E )  approximation also overestimates 
the size of the region where the first-order nature of the transition becomes apparent. 

Table 1. The temperature parameter 
specific heat exponent LY = ~ / 6  and E = 1. 

estimated from (2.30) for a few values of b.  The 

CL," 

b h = 0.25 h = 0.65 

-0.05 4 x 10-5 6 X IO-' 
-0.10 2 x 10-3 3 x 
-0.15 2 x 3 x 10-5 
-0.20 8 X I x 10-4 
-0.30 0.6 9 x 10-4 

The scaling representation of our results may be obtained by introducing non-linear 
scaling fields appropriate to this problem. They are functions of the physical fields z, uo 
and v i h  and are defined by 

g,(l) = g, exp(A,l) gEh(I) = gEh exp(AZhI) gu(0 = gu exP(Au0 (4.3) 

where A, = 1/v and Au = -Azh = a/v are the corresponding exponents associated with 
linear scaling fields at the fixed point I,. The non-linear fields determined by (4.3) are 

1 - a  b 
gu == gPh =- 

z 
a g, =- 1 - b  (4.4) 

in terms of which the solutions of the recursion relations become 

and the solution of equation (2.22) can be written as 

where now y = (o/To)g;"". The variable n = gug;@u with = A u / A z  = a measures the 
distance from the first-order transition. Substituting these results into (2.27) we obtain 
various acoustic quantities in the scaling forms 

4 0 ,  - g;PFJm2F,(y; 4 ,  n)  (4.7a) 

c 2 @ ,  - c2(0, - gFF,, (Y; 4 ,  a)  (4.7b) 

c -yo ,  z) - c - q o ,  z) - g;"F,*(y; n )  (4.7c) 

where the variable q = gihgF describes the cross-over from I1 ( q  = m) to I2  (q  = 0). The 
last two expressions are useful for a description of sound dispersion. Contrary to FA, 
the scaling function FA, does not depend on the cross-over variable in this order of 
approximation, 
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Next the n dependence of the scaling functions may be eliminated by a renor- 

(4.8a) 

(4.8b) 

( 4 . 8 ~ )  

where we have introduced an effective exponent veff( t )  (Riedel and Wegner 1974), 
which can be defined here by 

malisation of the variables 

y + j  = y ( 1  + n)zu = ( W / r O ) z - z v e f f ( r )  

q+ q = q ( 1 +  n)-" 

gi + g : ( l  + n)-u = t ~ e d r )  

1 a log@) 
2 a log(+ 

Veff(Z) = 

It is obtained to order E with the result 

a bt-" 
Vef f (Z)  = v + - 

2 1 - b + b-"' 

(4.9) 

(4.10) 

Finally, instead of (4 .7)  we obtain 

&(U, z) - t - P H ( " F " ( j ;  q )  

C y W ,  z) - cyo ,  z) - z"F*,(j;  4) 
c - y o ,  z) - c - y w ,  t) - t-"E&) 

( 4 . 1 1 ~ )  

(4.11b) 

(4.1 1 c) 

where the scaling functions with a tilde, F&; q )  = F J j ;  q ,  0) . . . , are plotted in figures 
9 and 10 for various values of the cross-over parameter q.  The scaling functions 

Figure 9. The function loglo(Fa) plotted against loglo(j) for different values of Q, where we 
have normalised pa to be unity at j~ = 0. The limiting values 0 and m of c j  correspond to the 
scaling functions g, and g,, respectively. 
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Fw and FAl coincide with those of the strong-coupling regime g B  and fB at q = 0, while in 
the limit 4 + they are equal to the functions g A  and fA, respectively. In the weak- 
coupling regime we have FAl - FA2 as should be expected. 

1 0 

I t  

- - - - -  

Figure 10. Double logarithmic plots of pA2 (broken curve) and FA, (full curves) for different 
values of q. We have taken the normalisation pA,(O; q )  = 10”2~A2(0) and pA2(m) = 1. 

5. Tricritical behaviour 

In consequence of the interaction between OP and the strain, the transition temperature 
is pressure-dependent and the effective coupling constant is shifted to u0 = llo - vih  arid 
thus may become negative at a certain temperature (U gains a temperature dependence 
if we maintain the previously neglected factor kBT in the explicit form). That is the 
reason why pseudo-critical behaviour may be expected in systems with strong op-strain 
coupling (Bergman and Halperin 1976, Bruce 1980). Such a pseudo-tricritical point 
would separate a line of pseudo-critical points with very small jumps of entropy from a 
line of markedly first-order transition points with considerable entropy jumps. An 
analysis, similar to that shown explicitly in 9 2 (Pawlak 1987), leads straightforwardly to 
the conclusion that the acoustic pseudo-tricritical behaviour is controlled by one of two 
Gaussian fixed points in ( r ,  U ,  U ,  uph) space: GI (0, 0, 0,O) and G2 (0, 0, 0, E ) .  

The corresponding predictions for the sound attenuation and dispersion in the weak- 
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coupling pseudo-tricritical regime, controlled by GI ,  are 

c Y ( 0 ,  z) - z-@q'A(y) 
c y w ,  z) - c y o ,  z) - z-"tf'A(y) 

( 5 . 1 ~ )  
(5.lb) 

while the analogous results in the strong-coupling regime (controlled by G2) are 

a(0,  z) - z-P'Bgk(y) (5.2a) 

c y o ,  z) - cyo ,  z) - t"tfb(y) (5.2b) 

where p i  = z,v, + at and pk = z,v, + ( a , / 2 )  and a,, vt ,  z ,  are the usual (Gaussian) 
tricritical exponents. The scaling functions can be easily obtained from (2.27) and (2.28) 
by replacing U ;  , oFh* and the Ising exponents by their Gaussian values. 

It is difficult to distinguish experimentally the acoustic critical behaviour in weak- 
and strong-coupling regimes, because the Ising exponent a is rather small. Fortunately, 
at the tricritical point the situation is more favourable because the tricritical exponent 
a, = 0.5 in three dimensions. Thus, one may hope that the different types of tricritical 
behaviour should be experimentally distinguishable. An example of a system displaying 
multicritical behaviour with the OP presumably strongly coupled to the acoustic phonons 
is some of the ammonium halides. The application of our theory to this case will be 
published in a separate paper. 

6. Summary and conclusions 

The aim of this paper was to investigate consistently the influence of elastic couplings 
on the critical and tricritical behaviour of the sound attenuation and dispersion. Our 
analysis shows that except for the conventional behaviour of these quantities described 
by (3.2) and (5.1) there is a new 'asymptotic' regime if C:,/C?, 4 0, described by (3.3) 
and (5 .2) .  In general, a cross-over from the former to the latter regime is expected on 
which the macroscopic instability signals are superimposed. However, the temperatures 
in the vicinity of the first-order transition are outside the region of validity of our theory. 
Both effects, one due to the cross-over as well as that due to macroscopic instability, 
decrease the effective exponent controlling the growth of attenuation in the hydro- 
dynamic region. The effective correlation length exponent may also be introduced in 
order to incorporate the latter effects. Then, the relatively simpler scaling forms of the 
acoustic quantities are obtained. The predicted new features would be observed in the 
systems in which appreciable velocity changes occur close to the transition point. The 
large specific heat exponent is also favourable for them. The most promising systems to 
verify our predictions would be those showing multicritical points. The measured sound 
attenuation tricritical exponents in ammonium halides are consistent with our findings. 

The main emphasis of this paper was put on Ising-like systems above the transition 
temperature. However, the analysis developed here is also applicable to the ordered 
phase as well as to other systems including anisotropic coupling terms. In the latter case 
a general sound mode may be decomposed into symmetrised components with different 
sound attenuation and dispersion exponents (Fossum 1985). For example in the case of 
cubic systems (e.g. perovskites) the role of the specific heat exponent will be taken over 
by one of the cy, = a + 2(Gl - l)? where Go = 1 and G 2  are the cross-over exponents 
associated with variables SISz and Si - S $ ,  respectively. Generally speaking the sound 
attenuation exponents in the 'strong-coupling' theories are expected to be smaller than 
the 'weak-coupling' ones. 
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